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ABSTRACT
We study a natural extension of classical evolutionary game
theory to a setting in which pairwise interactions are re-
stricted to the edges of an undirected graph or network. We
generalize the definition of an evolutionary stable strategy
(ESS), and show a pair of complementary results that ex-
hibit the power of randomization in our setting: subject
to degree or edge density conditions, the classical ESS of
any game are preserved when the graph is chosen randomly
and the mutation set is chosen adversarially, or when the
graph is chosen adversarially and the mutation set is chosen
randomly. We examine natural strengthenings of our gener-
alized ESS definition, and show that similarly strong results
are not possible for them.
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General Terms
Economics, Theory
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1. INTRODUCTION
In this paper, we introduce and examine a natural exten-

sion of classical evolutionary game theory (EGT) to a setting
in which pairwise interactions are restricted to the edges of
an undirected graph or network. This extension generalizes
the classical setting, in which all pairs of organisms in an
infinite population are equally likely to interact. The clas-
sical setting can be viewed as the special case in which the
underlying network is a clique.

There are many obvious reasons why one would like to
examine more general graphs, the primary one being in that
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many scenarios considered in evolutionary game theory, all
interactions are in fact not possible. For example, geograph-
ical restrictions may limit interactions to physically proxi-
mate pairs of organisms. More generally, as evolutionary
game theory has become a plausible model not only for bio-
logical interaction, but also economic and other kinds of in-
teraction in which certain dynamics are more imitative than
optimizing (see [2, 16] and chapter 4 of [19]), the network
constraints may come from similarly more general sources.
Evolutionary game theory on networks has been considered
before, but not in the generality we will do so here (see
Section 4).

We generalize the definition of an evolutionary stable strat-
egy (ESS) to networks, and show a pair of complementary
results that exhibit the power of randomization in our set-
ting: subject to degree or edge density conditions, the clas-
sical ESS of any game are preserved when the graph is cho-
sen randomly and the mutation set is chosen adversarially,
or when the graph is chosen adversarially and the mutation
set is chosen randomly. We examine natural strengthenings
of our generalized ESS definition, and show that similarly
strong results are not possible for them.

The work described here is part of recent efforts exam-
ining the relationship between graph topology or structure
and properties of equilibrium outcomes. Previous works in
this line include studies of the relationship of topology to
properties of correlated equilibria in graphical games [11],
and studies of price variation in graph-theoretic market ex-
change models [12]. More generally, this work contributes
to the line of graph-theoretic models for game theory inves-
tigated in both computer science [13] and economics [10].

2. CLASSICAL EGT
The fundamental concept of evolutionary game theory is

the evolutionarily stable strategy (ESS). Intuitively, an ESS
is a strategy such that if all the members of a population
adopt it, then no mutant strategy could invade the popula-
tion [17]. To make this more precise, we describe the basic
model of evolutionary game theory, in which the notion of
an ESS resides.

The standard model of evolutionary game theory consid-
ers an infinite population of organisms, each of which plays
a strategy in a fixed, 2-player, symmetric game. The game
is defined by a fitness function F . All pairs of members of
the infinite population are equally likely to interact with one
another. If two organisms interact, one playing strategy s



and the other playing strategy t, the s-player earns a fitness
of F (s|t) while the t-player earns a fitness of F (t|s).

In this infinite population of organisms, suppose there is a
1 − ε fraction who play strategy s, and call these organisms
incumbents; and suppose there is an ε fraction who play t,
and call these organisms mutants. Assume two organisms
are chosen uniformly at random to play each other. The
strategy s is an ESS if the expected fitness of an organ-
ism playing s is higher than that of an organism playing t,
for all t 6= s and all sufficiently small ε. Since an incum-
bent will meet another incumbent with probability 1 − ε
and it will meet a mutant with probability ε, we can calcu-
late the expected fitness of an incumbent, which is simply
(1 − ε)F (s|s) + εF (s|t). Similarly, the expected fitness of
a mutant is (1 − ε)F (t|s) + εF (t|t). Thus we come to the
formal definition of an ESS [19].

Definition 2.1. A strategy s is an evolutionarily stable
strategy (ESS) for the 2-player, symmetric game given by
fitness function F , if for every strategy t 6= s, there exists
an εt such that for all 0 < ε < εt, (1 − ε)F (s|s) + εF (s|t) >
(1 − ε)F (t|s) + εF (t|t).

A consequence of this definition is that for s to be an ESS,
it must be the case that F (s|s) ≥ F (t|s), for all strategies
t. This inequality means that s must be a best response
to itself, and thus any ESS strategy s must also be a Nash
equilibrium. In general the notion of ESS is more restric-
tive than Nash equilibrium, and not all 2-player, symmetric
games have an ESS.

In this paper our interest is to examine what kinds of net-
work structure preserve the ESS strategies for those games
that do have a standard ESS. First we must of course gen-
eralize the definition of ESS to a network setting.

3. EGT ON GRAPHS
In our setting, we will no longer assume that two organ-

isms are chosen uniformly at random to interact. Instead,
we assume that organisms interact only with those in their
local neighborhood, as defined by an undirected graph or
network. As in the classical setting (which can be viewed
as the special case of the complete network or clique), we
shall assume an infinite population, by which we mean we
examine limiting behavior in a family of graphs of increasing
size.

Before giving formal definitions, some comments are in
order on what to expect in moving from the classical to the
graph-theoretic setting. In the classical (complete graph)
setting, there exist many symmetries that may be broken in
moving to the the network setting, at both the group and
individual level. Indeed, such asymmetries are the primary
interest in examining a graph-theoretic generalization.

For example, at the group level, in the standard ESS defi-
nition, one need not discuss any particular set of mutants of
population fraction ε. Since all organisms are equally likely
to interact, the survival or fate of any specific mutant set is
identical to that of any other. In the network setting, this
may not be true: some mutant sets may be better able to
survive than others due to the specific topologies of their in-
teractions in the network. For instance, foreshadowing some
of our analysis, if s is an ESS but F (t|t) is much larger than
F (s|s) and F (s|t), a mutant set with a great deal of “in-
ternal” interaction (that is, edges between mutants) may be

able to survive, whereas one without this may suffer. At
the level of individuals, in the classical setting, the assertion
that one mutant dies implies that all mutants die, again by
symmetry. In the network setting, individual fates may dif-
fer within a group all playing a common strategy. These
observations imply that in examining ESS on networks we
face definitional choices that were obscured in the classical
model.

If G is a graph representing the allowed pairwise interac-
tions between organisms (vertices), and u is a vertex of G
playing strategy su, then the fitness of u is given by

F (u) =

P

v∈Γ(u) F (su|sv)

|Γ(u)|
.

Here sv is the strategy being played by the neighbor v, and
Γ(u) = {v ∈ V : (u, v) ∈ E}. One can view the fitness of
u as the average fitness u would obtain if it played each if
its neighbors, or the expected fitness u would obtain if it
were assigned to play one of its neighbors chosen uniformly
at random.

Classical evolutionary game theory examines an infinite,
symmetric population. Graphs or networks are inherently fi-
nite objects, and we are specifically interested in their asym-
metries, as discussed above. Thus all of our definitions shall
revolve around an infinite family G = {Gn}

∞
n=0 of finite

graphs Gn over n vertices, but we shall examine asymptotic
(large n) properties of such families.

We first give a definition for a family of mutant vertex
sets in such an infinite graph family to contract .

Definition 3.1. Let G = {Gn}
∞
n=0 be an infinite family

of graphs, where Gn has n vertices. Let M = {Mn}
∞
n=0

be any family of subsets of vertices of the Gn such that
|Mn| ≥ εn for some constant ε > 0. Suppose all the vertices
of Mn play a common (mutant) strategy t, and suppose the
remaining vertices in Gn play a common (incumbent) strat-
egy s. We say that Mn contracts if for sufficiently large n,
for all but o(n) of the j ∈ Mn, j has an incumbent neighbor
i such that F (j) < F (i).

A reasonable alternative would be to ask that the con-
dition above hold for all mutants rather than all but o(n).
Note also that we only require that a mutant have one in-
cumbent neighbor of higher fitness in order to die; one might
considering requiring more. In Sections 6.1 and 6.2 we con-
sider these stronger conditions and demonstrate that our
results can no longer hold.

In order to properly define an ESS for an infinite family of
finite graphs in a way that recovers the classical definition
asymptotically in the case of the family of complete graphs,
we first must give a definition that restricts attention to fam-
ilies of mutant vertices that are smaller than some invasion
threshold ε′n, yet remain some constant fraction of the pop-
ulation. This prevents “invasions” that survive merely by
constituting a vanishing fraction of the population.

Definition 3.2. Let ε′ > 0, and let G = {Gn}
∞
n=0 be

an infinite family of graphs, where Gn has n vertices. Let
M = {Mn}

∞
n=0 be any family of (mutant) vertices in Gn.

We say that M is ε′-linear if there exists an ε, ε′ > ε > 0,
such that for all sufficiently large n, ε′n > |Mn| > εn.

We can now give our definition for a strategy to be evo-
lutionarily stable when employed by organisms interacting
with their neighborhood in a graph.



Definition 3.3. Let G = {Gn}
∞
n=0 be an infinite family

of graphs, where Gn has n vertices. Let F be any 2-player,
symmetric game for which s is a strategy. We say that s is
an ESS with respect to F and G if for all mutant strategies
t 6= s, there exists an εt > 0 such that for any εt-linear
family of mutant vertices M = {Mn}

∞
n=0 all playing t, for n

sufficiently large, Mn contracts.

Thus, to violate the ESS property for G, one must witness
a family of mutations M in which each Mn is an arbitrarily
small but nonzero constant fraction of the population of Gn,
but does not contract (i.e. every mutant set has a subset of
linear size that survives all of its incumbent interactions).
In Section A.1 we show that the definition given coincides
with the classical one in the case where G is the family of
complete graphs, in the limit of large n. We note that even
in the classical model, small sets of mutants were allowed to
have greater fitness than the incumbents, as long as the size
of the set was o(n) [18].

In the definition above there are three parameters: the
game F , the graph family G and the mutation family M .
Our main results will hold for any 2-player, symmetric game
F . We will also study two rather general settings for G and
M : that in which G is a family of random graphs and M is
arbitrary, and that in which G is nearly arbitrary and M is
randomly chosen. In both cases, we will see that, subject to
conditions on degree or edge density (essentially forcing con-
nectivity of G but not much more), for any 2-player, sym-
metric game, the ESS of the classical settings, and only those
strategies, are always preserved. Thus a common theme of
these results is the power of randomization: as long as either
the network itself is chosen randomly, or the mutation set is
chosen randomly, classical ESS are preserved.

4. RELATED WORK
There has been previous work that analyzes which strate-

gies are resilient to mutant invasions with respect to various
types of graphs. What sets our work apart is that the model
we consider encompasses a significantly more general class of
games and graph topologies. We will briefly survey this lit-
erature and point out the differences in the previous models
and ours.

In [8], [3], and [4], the authors consider specific families
of graphs, such as cycles and lattices, where players play
specific games, such as 2 × 2-games or k × k-coordination
games. In these papers the authors specify a simple, local
dynamic for players to improve their payoffs by changing
strategies, and analyze what type of strategies will grow to
dominate the population. The model we propose is more
general than both of these, as it encompasses a larger class
of graphs as well as a richer set of games.

Also related to our work is that of [14], where the authors
propose two models. The first assumes organisms interact
according to a weighted, undirected graph. However, the
fitness of each organism is simply assigned and does not de-
pend on the actions of each organism’s neighborhood. The
second model has organisms arranged around a directed cy-
cle, where neighbors play a 2 × 2-game. With probability
proportional to its fitness, an organism is chosen to repro-
duce by placing a replica of itself in its neighbors position,
thereby “killing” the neighbor. We consider more general
games than the first model and more general graphs than
the second.

Finally, the works most closely related to ours are [7], [15],
and [6]. The authors consider 2-action, coordination games
played by players in a general undirected graph. In these
three works, the authors specify a dynamic for a strategy to
reproduce, and analyze properties of the graph that allow a
strategy to overrun the population. Here again, one can see
that our model is more general than these, as it allows for
organisms to play any 2-player, symmetric game.

5. NETWORKS PRESERVING ESS
We now proceed to state and prove two complementary

results in the network ESS model defined in Section 3. First,
we consider a setting where the graphs are generated via the
Gn,p model of Erdős and Rényi [5]. In this model, every
pair of vertices are joined by an edge independently and
with probability p (where p may depend on n). The mutant
set, however, will be constructed adversarially (subject to
the linear size constraint given by Definition 3.3). For these
settings, we show that for any 2-player, symmetric game, s
is a classical ESS of that game, if and only if s is an ESS
for {Gn,p}

∞
n=0, where p = Ω(1/nc) and 0 ≤ c < 1, and any

mutant family {Mn}
∞
n=0, where each Mn has linear size. We

note that under these settings, if we let c = 1 − γ for small
γ > 0, the expected number of edges in Gn is n1+γ or larger
— that is, just superlinear in the number of vertices and
potentially far smaller than O(n2). It is easy to convince
oneself that once the graphs have only a linear number of
edges, we are flirting with disconnectedness, and there may
simply be large mutant sets that can survive in isolation due
to the lack of any incumbent interactions in certain games.
Thus in some sense we examine the minimum plausible edge
density.

The second result is a kind of dual to the first, considering
a setting where the graphs are chosen arbitrarily (subject to
conditions) but the mutant sets are chosen randomly. It
states that for any 2-player, symmetric game, s is a clas-
sical ESS for that game, if and only if s is an ESS for any
{Gn = (Vn, En)}∞n=0 in which for all v ∈ Vn, deg(v) = Ω(nγ )
(for any constant γ > 0), and a family of mutant sets
{Mn}

∞
n=0, that is chosen randomly (that is, in which each or-

ganism is labeled a mutant with constant probability ε > 0).
Thus, in this setting we again find that classical ESS are pre-
served subject to edge density restrictions. Since the degree
assumption is somewhat strong, we also prove another result
which only assumes that |En| ≥ n1+γ , and shows that there
must exist at least 1 mutant with an incumbent neighbor of
higher fitness (as opposed to showing that all but o(n) mu-
tants have an incumbent neighbor of higher fitness). As will
be discussed, this rules out “stationary” mutant invasions.

5.1 Random Graphs, Adversarial Mutations
Now we state and prove a theorem which shows that if s

is a classical ESS, then s will be an ESS for random graphs,
where a linear sized set of mutants is chosen by an adversary.

Theorem 5.1. Let F be any 2-player, symmetric game,
and suppose s is a classical ESS of F . Let the infinite
graph family {Gn}

∞
n=0 be drawn according to Gn,p, where

p = Ω(1/nc) and 0 ≤ c < 1. Then with probability 1, s is
an ESS.

The main idea of the proof is to divide mutants into 2
categories, those with “normal” fitness and those with “ab-



normal” fitness. First, we show all but o(n) of the popula-
tion (incumbent or mutant) have an incumbent neighbor of
normal fitness. This will imply that all but o(n) of the mu-
tants of normal fitness have an incumbent neighbor of higher
fitness. The vehicle for proving this is Theorem 2.15 of [5],
which gives an upper bound on the number of vertices not
connected to a sufficiently large set. This theorem assumes
that the size of this large set is known with equality, which
necessitates the union bound argument below. Secondly, we
show that there can be at most o(n) mutants with abnormal
fitness. Since there are so few of them, even if none of them
have an incumbent neighbor of higher fitness, s will still be
an ESS with respect to F and G.

Proof. (Sketch) Let t 6= s be the mutant strategy. Since
s is a classical ESS, there exists an εt such that (1−ε)F (s|s)+
εF (s|t) > (1 − ε)F (t|s) + εF (t|t), for all 0 < ε < εt. Let M
be any mutant family that is εt-linear. Thus for any fixed
value of n that is sufficiently large, there exists an ε such
that |Mn| = εn and εt > ε > 0. Also, let In = Vn \ Mn and
let I ′ ⊆ In be the set of incumbents that have fitness in the
range (1 ± τ )[(1 − ε)F (s|s) + εF (s|t)] for some constant τ ,
0 < τ < 1/6. Lemma 5.1 below shows (1 − ε)n ≥ |I ′| ≥
(1 − ε)n − 24 log n

τ2p
. Finally, let

TI′ = {x ∈ V \ I ′ : Γ(x) ∩ I ′ 6= ∅}.

(For the sake of clarity we suppress the subscript n on the
sets I ′ and T .) The union bound gives us

Pr(|TI′ | ≥ δn) ≤

(1−ε)n
X

i=(1−ε)n− 24 log n

τ2p

Pr(|TI′ | ≥ δn and |I ′| = i) (1)

Letting δ = n−γ for some γ > 0 gives δn = o(n). We will
apply Theorem 2.15 of [5] to the summand on the right hand
side of Equation 1. If we let γ = (1− c)/2, and combine this
with the fact that 0 ≤ c < 1, all of the requirements of this
theorem will be satisfied (details omitted). Now when we
apply this theorem to Equation 1, we get

Pr(|TI′ | ≥ δn) ≤

(1−ε)n
X

i=(1−ε)n− 24 log n

τ2p

exp

„

−
1

6
Cδn

«

(2)

= o(1)

This is because equation 2 has only 24 log n
τ2p

terms, and

Theorem 2.15 of [5] gives us that C ≥ (1− ε)n1−c − 24 log n
τ2 .

Thus we have shown, with probability tending to 1 as n →
∞, at most o(n) individuals are not attached to an incum-
bent which has fitness in the range (1 ± τ )[(1 − ε)F (s|s) +
εF (s|t)]. This implies that the number of mutants of ap-
proximately normal fitness, not attached to an incumbent
of approximately normal fitness, is also o(n).

Now those mutants of approximately normal fitness that
are attached to an incumbent of approximately normal fit-
ness have fitness in the range (1±τ )[(1− ε)F (t|s)+ εF (t|t)].
The incumbents that they are attached to have fitness in the
range (1±τ )[(1−ε)F (s|s)+εF (s|t)]. Since s is an ESS of F ,
we know (1−ε)F (s|s)+εF (s|t) > (1−ε)F (t|s)+εF (t|t), thus
if we choose τ small enough, we can ensure that all but o(n)
mutants of normal fitness have a neighboring incumbent of
higher fitness.

Finally by Lemma 5.1, we know there are at most o(n) mu-
tants of abnormal fitness. So even if all of them are more fit
than their respective incumbent neighbors, we have shown
all but o(n) of the mutants have an incumbent neighbor of
higher fitness.

We now state and prove the lemma used in the proof
above.

Lemma 5.1. For almost every graph Gn,p with (1 − ε)n
incumbents, all but 24 log n

δ2p
incumbents have fitness in the

range (1±δ)[(1−ε)F (s|s)+εF (s|t)], where p = Ω(1/nc) and
ε, δ and c are constants satisfying 0 < ε < 1, 0 < δ < 1/6,
0 ≤ c < 1. Similarly, under the same assumptions, all
but 24 log n

δ2p
mutants have fitness in the range (1 ± δ)[(1 −

ε)F (t|s) + εF (t|t)].

Proof. We define the mutant degree of a vertex to be
the number of mutant neighbors of that vertex, and in-
cumbent degree analogously. Observe that the only way for
an incumbent to have fitness far from its expected value of
(1−ε)F (s|s)+εF (s|t) is if it has a fraction of mutant neigh-
bors either much higher or much lower than ε. Theorem
2.14 of [5] gives us a bound on the number of such incum-
bents. It states that the number of incumbents with mutant
degree outside the range (1 ± δ)p|M | is at most 12 log n

δ2p
. By

the same theorem, the number of incumbents with incum-
bent degree outside the range (1 ± δ)p|I| is at most 12 log n

δ2p
.

From the linearity of fitness as a function of the fraction
of mutant or incumbent neighbors, one can show that for
those incumbents with mutant and incumbent degree in the
expected range, their fitness is within a constant factor of
(1 − ε)F (s|s) + εF (s|t), where that constant goes to 1 as n
tends to infinity and δ tends to 0. The proof for the mutant
case is analogous.

We note that if in the statement of Theorem 5.1 we let
c = 0, then p = 1. This, in turn, makes G = {Kn}

∞
n=0,

where Kn is a clique of n vertices. Then for any Kn all
of the incumbents will have identical fitness and all of the
mutants will have identical fitness. Furthermore, since s was
an ESS for G, the incumbent fitness will be higher than the
mutant fitness. Finally, one can show that as n → ∞, the
incumbent fitness converges to (1 − ε)F (s|s) + εF (s|t), and
the mutant fitness converges to (1 − ε)F (t|s) + εF (t|t). In
other words, s must be a classical ESS, providing a converse
to Theorem 5.1. We rigorously present this argument in
Section A.1.

5.2 Adversarial Graphs, Random Mutations
We now move on to our second main result. Here we show

that if the graph family, rather than being chosen randomly,
is arbitrary subject to a minimum degree requirement, and
the mutation sets are randomly chosen, classical ESS are
again preserved. A modified notion of ESS allows us to
considerably weaken the degree requirement to a minimum
edge density requirement.

Theorem 5.2. Let G = {Gn = (Vn, En)}∞n=0 be an infi-
nite family of graphs in which for all v ∈ Vn, deg(v) = Ω(nγ )
(for any constant γ > 0). Let F be any 2-player, symmetric
game, and suppose s is a classical ESS of F . Let t be any
mutant strategy, and let the mutant family M = {Mn}

∞
n=0 be

chosen randomly by labeling each vertex a mutant with con-
stant probability ε, where εt > ε > 0. Then with probability
1, s is an ESS with respect to F , G and M .



Proof. Let t 6= s be the mutant strategy and let X be
the event that every incumbent has fitness within the range
(1 ± τ )[(1 − ε)F (s|s) + εF (s|t)], for some constant τ > 0 to
be specified later. Similarly, let Y be the event that every
mutant has fitness within the range (1 ± τ )[(1 − ε)F (t|s) +
εF (t|t)]. Since Pr(X ∩ Y ) = 1 − Pr(¬X ∪ ¬Y ), we proceed
by showing Pr(¬X ∪ ¬Y ) = o(1).

¬X is the event that there exists an incumbent with fitness
outside the range (1±τ )[(1−ε)F (s|s)+εF (s|t)]. If degM (v)
denotes the number of mutant neighbors of v, similarly,
degI(v) denotes the number of incumbent neighbors of v,

then an incumbent i has fitness
degI (i)

deg(i)
F (s|s)+ degM (i)

deg(i)
F (s|t).

Since F (s|s) and F (s|t) are fixed quantities, the only varia-
tion in an incumbents fitness can come from variation in the
terms degI(i)

deg(i)
and degM (i)

deg(i)
. One can use the Chernoff bound

followed by the union bound to show that for any incumbent
i,

Pr(F (i) /∈ (1 ± τ )[(1 − ε)F (s|s) + εF (s|t)])

< 4 exp

„

−
ε deg(i)τ 2

3

«

.

Next one can use the union bound again to bound the prob-
ability of the event ¬X,

Pr(¬X) ≤ 4n exp

„

−
diτ

2

3

«

where di = mini∈V \M deg(i), 0 < ε ≤ 1/2. An analogous

argument can be made to show Pr(¬Y ) < 4n exp(−
εdjτ2

3
),

where dj = minj∈M deg(j) and 0 < ε ≤ 1/2. Thus, by the
union bound,

Pr(¬X ∪ ¬Y ) < 8n exp

„

−
εdτ 2

3

«

where d = minv∈V deg(v), 0 < ε ≤ 1/2. Since deg(v) =
Ω(nγ ), for all v ∈ V , and ε, τ and γ are all constants greater
than 0,

lim
n→∞

8n

exp (εdτ 2/3)
= 0,

so Pr(¬X∪¬Y ) = o(1). Thus, we can choose τ small enough
such that (1 + τ )[(1 − ε)F (t|s) + εF (t|t)] < (1 − τ )[(1 −
ε)F (s|s)+εF (s|t)], and then choose n large enough such that
with probability 1 − o(1), every incumbent will have fitness
in the range (1±τ )[(1−ε)F (s|s)+F (s|t)], and every mutant
will have fitness in the range (1± τ )[(1− ε)F (t|s)+ εF (t|t)].
So with high probability, every incumbent will have a higher
fitness than every mutant.

By arguments similar to those following the proof of The-
orem 5.1, if we let G = {Kn}

∞
n=0, each incumbent will have

the same fitness and each mutant will have the same fitness.
Furthermore, since s is an ESS for G, the incumbent fitness
must be higher than the mutant fitness. Here again, one
has to show show that as n → ∞, the incumbent fitness
converges to (1− ε)F (s|s) + εF (s|t), and the mutant fitness
converges to (1− ε)F (t|s) + εF (t|t). Observe that the exact
fraction mutants of Vn is now a random variable. So to prove
this convergence we use an argument similar to one that is
used to prove that sequence of random variables that con-
verges in probability also converges in distribution (details
omitted). This in turn establishes that s must be a classical

ESS, and we thus obtain a converse to Theorem 5.2. This
argument is made rigorous in Section A.2.

The assumption on the degree of each vertex of Theo-
rem 5.2 is rather strong. The following theorem relaxes
this requirement and only necessitates that every graph have
n1+γ edges, for some constant γ > 0, in which case it shows
there will alway be at least 1 mutant with an incumbent
neighbor of higher fitness. A strategy that is an ESS in
this weakened sense will essentially rule out stable, static
sets of mutant invasions, but not more complex invasions.
An example of more complex invasions are mutant sets that
survive, but only by perpetually “migrating” through the
graph under some natural evolutionary dynamics, akin to
“gliders” in the well-known Game of Life [1].

Theorem 5.3. Let F be any game, and let s be a classical
ESS of F , and let t 6= s be a mutant strategy. For any graph
family G = {Gn = (Vn, En)}∞n=0 in which |En| ≥ n1+γ (for
any constant γ > 0), and any mutant family M = {Mn}

∞
n=0

which is determined by labeling each vertex a mutant with
probability ε, where εt > ε > 0, the probability that there
exists a mutant with an incumbent neighbor of higher fitness
approaches 1 as n → ∞.

Proof. (Sketch) The main idea behind the proof is to
show that with high probability, over only the choice of mu-
tants, there will be an incumbent-mutant edge in which both
vertices have high degree. If their degree is high enough, we
can show that close to an ε fraction of their neighbors are
mutants, and thus their fitnesses are very close to what we
expect them to be in the classical case. Since s is an ESS,
the fitness of the incumbent will be higher than the mutant.

We call an edge (i, j) ∈ En a g(n)-barbell if deg(i) ≥ g(n)
and deg(j) ≥ g(n). Suppose Gn has at most h(n) edges that
are g(n)-barbells. This means there are at least |En| −h(n)
edges in which at least one vertex has degree at most g(n).
We call these vertices light vertices. Let `(n) be the number
of light vertices in Gn. Observe that |En|−h(n) ≤ `(n)g(n).
This is because each light vertex is incident on at most g(n)
edges. This gives us that

|En| ≤ h(n) + `(n)g(n) ≤ h(n) + ng(n).

So if we choose h(n) and g(n) such that h(n) + ng(n) =
o(n1+γ), then |En| = o(n1+γ ). This contradicts the as-
sumption that |En| = Ω(n1+γ ). Thus, subject to the above
constraint on h(n) and g(n), Gn must contain at least h(n)
edges that are g(n)-barbells.

Now let Hn denote the subgraph induced by the barbell
edges of Gn. Note that regardless of the structure of Gn,
there is no reason that Hn should be connected. Thus, let
m be the number of connected components of Hn, and let
c1, c2, . . . , cm be the number of vertices in each of these con-
nected components. Note that since Hn is an edge-induced
subgraph we have ck ≥ 2 for all components k. Let us choose
the mutant set by first flipping the vertices in Hn only. We
now show that the probability, with respect to the random
mutant set, that none of the components of Hn have an
incumbent-mutant edge is exponentially small in n. Let An

be the event that every component of Hn contains only mu-
tants or only incumbents. Then algebraic manipulations can
establish that

Pr[An] = Πm
k=1(ε

ck + (1 − ε)ck )

≤ (1 − ε)(1−
εβ2

2
)

Pm
k=1 ck



where β is a constant. Thus for ε sufficiently small the bound
decreases exponentially with

Pm
k=1 ck. Furthermore, since

Pm
k=1

`

ck
2

´

≥ h(n) (with equality achieved by making each

component a clique), one can show that
Pm

k=1 ck ≥
p

h(n).
Thus, as long as h(n) → ∞ with n, the probability that all
components are uniformly labeled will go to 0.

Now assuming that there exists a non-uniformly labeled
component, by construction that component contains an
edge (i, j) where i is an incumbent and j is a mutant, that
is a g(n)-barbell. We also assume that the h(n) vertices
already labeled have been done so arbitrarily, but that the
remaining g(n) − h(n) vertices neighboring i and j are la-
beled mutants independently with probability ε. Then via
a standard Chernoff bound argument, one can show that
with high probability, the fraction of mutants neighboring
i and the fraction of mutants neighboring j is in the range

(1 ± τ ) (g(n)−h(n))ε
g(n)

. Similarly, one can show that the frac-

tion of incumbents neighboring i and the fraction of mutants

neighboring j is in the range 1 − (1 ± τ ) (g(n)−h(n))ε
g(n)

.

Since s is an ESS, there exists a ζ > 0 such that (1 −
ε)F (s|s) + εF (s|t) = (1 − ε)F (t|s) + εF (t|t) + ζ. If we
choose g(n) = nγ , and h(n) = o(g(n)), we can choose n
large enough and τ small enough to force F (i) > F (j), as
desired.

6. LIMITATIONS OF STRONGER MODELS
In this section we show that if one tried to strengthen

the model described in Section 3 in two natural ways, one
would not be able to prove results as strong as Theorems 5.1
and 5.2, which hold for every 2-player, symmetric game.

6.1 Stronger Contraction for the Mutant Set
In Section 3 we alluded to the fact that we made certain

design decisions in arriving at Definitions 3.1, 3.2 and 3.3.
One such decision was to require that all but o(n) mutants
have incumbent neighbors of higher fitness. Instead, we
could have required that all mutants have an incumbent
neighbor of higher fitness. The two theorems in this sub-
section show that if one were to strengthen our notion of
contraction for the mutant set, given by Definition 3.1, in
this way, it would be impossible to prove theorems analogous
to Theorems 5.1 and 5.3.

Recall that Definition 3.1 gave the notion of contraction
for a linear sized subset of mutants. In what follows, we
will say an edge (i, j) contracts if i is an incumbent, j is a
mutant, and F (i) > F (j). Also, recall that Theorem 5.1
stated that if s is a classical ESS, then it is an ESS for
random graphs with adversarial mutations. Next, we prove
that if we instead required every incumbent-mutant edge to
contract, this need not be the case.

Theorem 6.1. Let F be a 2-player, symmetric game that
has a classical ESS s for which there exists a mutant strat-
egy t 6= s with F (t|t) > F (s|s) and F (t|t) > F (s|t). Let
G = {Gn}

∞
n=0 be an infinite family of random graphs drawn

according to Gn,p, where p = Ω(1/nc) for any constant
0 ≤ c < 1. Then with probability approaching 1 as n → ∞,
there exists a mutant family M = {Mn}

∞
n=0, where εtn >

|Mn| > εn and εt, ε > 0, in which there is an edge that does
not contract.

Proof. (Sketch) With probability approaching 1 as n →
∞, there exists a vertex j where deg(j) is arbitrarily close

to εn. So label j mutant, label one of its neighbors in-
cumbent, denoted i, and label the rest of j’s neighborhood
mutant. Also, label all of i’s neighbors incumbent, with
the exception of j and j’s neighbors (which were already
labeled mutant). In this setting, one can show that F (j)
will be arbitrarily close to F (t|t) and F (i) will be a convex
combination of F (s|s) and F (s|t), which are both strictly
less than F (t|t).

Theorem 5.3 stated that if s is a classical ESS, then for
graphs where |En| ≥ n1+γ , for some γ > 0, and where each
organism is labeled a mutant with probability ε, one edge
must contract. Below we show that, for certain graphs and
certain games, there will always exist one edge that will not
contract.

Theorem 6.2. Let F be a 2-player, symmetric game that
has a classical ESS s, such that there exists a mutant strat-
egy t 6= s where F (t|s) > F (s|t). There exists an infinite
family of graphs {Gn = (Vn, En)}∞n=0, where |En| = Θ(n2),
such that for a mutant family M = {Mn}

∞
n=0, which is de-

termined by labeling each vertex a mutant with probability
ε > 0, the probability there exists an edge in En that does
not contract approaches 1 as n → ∞.

Proof. (Sketch) Construct Gn as follows. Pick n/4 ver-
tices u1, u2, . . . , un/4 and add edges such that they from
a clique. Then, for each ui, i ∈ [n/4] add edges (ui, vi),
(vi, wi) and (wi, xi). With probability 1 as n → ∞, there
exists an i such that ui and wi are mutants and vi and xi

are incumbents. Observe that F (vi) = F (xi) = F (s|t) and
F (wi) = F (t|s).

6.2 Stronger Contraction for Individuals
The model of Section 3 requires that for an edge (i, j) to

contract, the fitness of i must be greater than the fitness of j.
One way to strengthen this notion of contraction would be
to require that the maximum fitness incumbent in the neigh-
borhood of j be more fit than the maximum fitness mutant
in the neighborhood of j. This models the idea that each
organism is trying to take over each place in its neighbor-
hood, but only the most fit organism in the neighborhood
of a vertex gets the privilege of taking it. If we assume that
we adopt this notion of contraction for individual mutants,
and require that all incumbent-mutant edges contract, we
will next show that Theorems 6.1 and 6.2 still hold, and
thus it is still impossible to get results such as Theorems 5.1
and 5.3 which hold for every 2-player, symmetric game.

In the proof of Theorem 6.1 we proved that F (i) is strictly
less than F (j). Observe that maximum fitness mutant in
the neighborhood of j must have fitness at least F (j). Also
observe that there is only 1 incumbent in the neighborhood
of j, namely i. So under this stronger notion of contraction,
the edge (i, j) will not contract.

Similarly, in the proof of Theorem 6.2, observe that the
only mutant in the neighborhood of wi is wi itself, which
has fitness F (t|s). Furthermore, the only incumbents in the
neighborhood of wi are vi and xi, both of which have fitness
F (s|t). By assumption, F (t|s) > F (s|t), thus, under this
stronger notion of contraction, neither of the incumbent-
mutant edges, (vi, wi) and (xi, wi), will contract.
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APPENDIX

A. GRAPHICAL AND CLASSICAL ESS
In this section we explore the conditions under which a

graphical ESS is also a classical ESS. To do so, we state and
prove two theorems which provide converses to each of the
major theorems in Section 3.

A.1 Random Graphs, Adversarial Mutations
Theorem 5.2 states that if s is a classical ESS and G =

{Gn,p}, where p = Ω(1/nc) and 0 ≤ c < 1, then with prob-
ability 1 as n → ∞, s is an ESS with respect to G. Here we
show that if s is an ESS with respect to G, then s is a classi-
cal ESS. In order to prove this theorem, we do not need the
full generality of s being an ESS for G when p = Ω(1/nc)
where 0 ≤ c < 1. All we need is s to be an ESS for G when
p = 1. In this case there are no more probabilistic events
in the theorem statement. Also, since p = 1 each graph in
G is a clique, so if one incumbent has a higher fitness than
one mutant, then all incumbents have higher fitness than all
mutants. This gives rise to the following theorem.

Theorem A.1. Let F be any 2-player, symmetric game,
and suppose s is a strategy for F and t 6= s is a mutant
strategy. Let G = {Kn}

∞
n=0. If, as n → ∞, for any εt-linear

family of mutants M = {Mn}
∞
n=0, there exists an incumbent

i and a mutant j such that F (i) > F (j), then s is a classical
ESS of F .

The proof of this theorem analyzes the limiting behavior
of the mutant population as the size of the cliques in G tends
to infinity. It also shows how the definition of ESS given in
Section 5 recovers the classical definition of ESS.

Proof. Since each graph in G is a clique, every incum-
bent will have the same number of incumbent and mutant
neighbors, and every mutant will have the same number of
incumbent and mutant neighbors. Thus, all incumbents will
have identical fitness and all mutants will have identical fit-
ness. Next, one can construct an εt-linear mutant family
M , where the fraction of mutants converges to ε for any ε,
where εt > ε > 0. So for n large enough, the number of
mutants in Kn will be arbitrarily close to εn. Thus, any
mutant subset of size εn will result in all incumbents having
fitness (1 − εn

n−1
)F (s|s) + εn

n−1
F (s|t), and all mutants hav-

ing fitness (1 − εn−1
n−1

)F (t|s) + εn−1
n−1

F (t|t). Furthermore, by
assumption the incumbent fitness must be higher than the
mutant fitness. This implies,

lim
n→∞

„

(1 −
εn

n − 1
)F (s|s) +

εn

n − 1
F (s|t) >

(1 −
εn − 1

n − 1
)F (t|s) +

εn − 1

n − 1
F (t|t)

«

= 1.

This implies, (1−ε)F (s|s)+εF (s|t) > (1−ε)F (t|s)+εF (t|t),
for all ε, where εt > ε > 0.

A.2 Adversarial Graphs, Random Mutations
Theorem 5.2 states that if s is a classical ESS for a 2-

player, symmetric game F , where G is chosen adversarially
subject to the constraint that the degree of each vertex is
Ω(nγ ) (for any constant γ > 0), and mutants are chosen
with probability ε, then s is an ESS with respect to F , G,
and M . Here we show that if s is an ESS with respect to F ,
G, and M then s is a classical ESS.

All we will need to prove this is that s is an ESS with re-
spect to G = {Kn}

∞
n=0, that is when each vertex has degree

n − 1. As in Theorem A.1, since the graphs are cliques, if
one incumbent has higher fitness than one mutant, then all
incumbents have higher fitness than all mutants. Thus, the
theorem below is also a converse to Theorem 5.3. (Recall
that Theorem 5.3 uses a weaker notion of contraction that



requires only one incumbent to have higher fitness than one
mutant.)

Theorem A.2. Let F be any 2-player symmetric game,
and suppose s is an incumbent strategy for F and t 6= s
is a mutant strategy. Let G = {Kn}

∞
n=0. If with probabil-

ity 1 as n → ∞, s is an ESS for G and a mutant family
M = {Mn}

∞
n=0, which is determined by labeling each vertex

a mutant with probability ε, where εt > ε > 0, then s is a
classical ESS of F .

This proof also analyzes the limiting behavior of the mu-
tant population as the size of the cliques in G tends to in-
finity. Since the mutants are chosen randomly we will use
an argument similar to the proof that a sequence of random
variables that converges in probability, also converge in dis-
tribution. In this case the sequence of random variables will
be actual fraction of mutants in each Kn.

Proof. Fix any value of ε, where εn > ε > 0, and con-
struct each Mn by labeling a vertex a mutant with probabil-
ity ε. By the same argument as in the proof of Theorem A.1,
if the actual number of mutants in Kn is denoted by εnn,
any mutant subset of size εnn will result in all incumbents
having fitness (1 − εnn

n−1
)F (s|s) + εnn

n−1
F (s|t), and in all mu-

tants having fitness (1 − εnn−1
n−1

)F (t|s) + εnn−1
n−1

F (t|t). This
implies

lim
n→∞

Pr(s is an ESS for Gn w.r.t. εnn mutants) = 1 ⇒

lim
n→∞

Pr

„

(1 −
εnn

n − 1
)F (s|s) +

εnn

n − 1
F (s|t) >

(1 −
εnn − 1

n − 1
)F (t|s) +

εnn − 1

n − 1
F (t|t)

«

= 1 ⇔

lim
n→∞

Pr

„

εn >
F (t|s) − F (s|s)

F (s|t) − F (s|s) − F (t|t) + F (t|s)

+
F (s|s) − F (t|t)

n

«

= 1 (3)

By two simple applications of the Chernoff bound and an
application of the union bound, one can show the sequence
of random variables {εn}

∞
n=0 converges to ε in probability.

Next, if we let Xn = −εn, X = −ε, b = −F (s|s) + F (t|t),

and a = − F (t|s)−F (s|s)
F (s|t)−F (s|s)−F (t|t)+F (t|s)

, by Theorem A.3 be-

low, we get that limn→∞ Pr(Xn < a + b/n) = Pr(X < a).
Combining this with equation 3, Pr(ε > −a) = 1.

The proof of the following theorem is very similar to the
proof that a sequence of random variables that converges in
probability, also converge in distribution. A good explana-
tion of this can be found in [9], which is the basis for the
argument below.

Theorem A.3. If {Xn}
∞
n=0 is a sequence of random vari-

ables that converge in probability to the random variable X,
and a and b are constants, then limn→∞ Pr(Xn < a+b/n) =
Pr(X < a).

Proof. By Lemma A.1 (see below) we have the following
two inequalities,

Pr(X < a + b/n − τ )

≤ Pr(Xn < a + b/n) + Pr(|X − Xn| > τ ),

Pr(Xn < a + b/n)

≤ Pr(X < a + b/n + τ ) + Pr(|X − Xn| > τ ).

Combining these gives,

Pr(X < a + b/n − τ ) − Pr(|X − Xn| > τ )

≤ Pr(Xn < a + b/n)

≤ Pr(X < a + b/n + τ ) + Pr(|X − Xn| > τ ).

There exists an n0 such that for all n > n0, |b/n| < τ , so
the following statement holds for all n > n0.

Pr(X < a − 2τ ) − Pr(|X − Xn| > τ )

≤ Pr(Xn < a + b/n)

≤ Pr(X < a + 2τ ) + Pr(|X − Xn| > τ ).

Take the limn→∞ of both sides of both inequalities, and
since Xn converges in probability to X,

Pr(X < a − 2τ ) ≤ lim
n→∞

Pr(Xn < a + b/n) (4)

≤ Pr(X < a + 2τ ). (5)

Recall that X is a continuous random variable representing
the fraction of mutants in an infinite sized graph. So if we
let FX(a) = Pr(X < a), we see that FX(a) is a cumulative
distribution function of a continuous random variable, and
is therefore continuous from the right. So

lim
τ↓0

FX(a − τ ) = lim
τ↓0

FX(a + τ ) = FX(a).

Thus if we take the limτ↓0 of inequalities 4 and 5 we get

Pr(X < a) = lim
n→∞

Pr(Xn < a + b/n).

The following lemma is quite useful, as it expresses the
cumulative distribution of one random variable Y , in terms
of the cumulative distribution of another random variable
X and the difference between X and Y .

Lemma A.1. If X and Y are random variables, c ∈ <
and τ > 0, then

Pr(Y < c) ≤ Pr(X < c + τ ) + Pr(|Y − X| > τ ).

Proof.

Pr(Y < c)

= Pr(Y < c, X < c + τ ) + Pr(Y < c, X ≥ c + τ )

≤Pr(Y < c | X < c + τ )Pr(X < c + τ )

+ Pr(|Y − X| > τ )

≤Pr(X < c + τ ) + Pr(|Y − X| > τ )


