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1 Introduction

In the model selection problem, we must ba ance the com-
plexity of a statistical model with its goodness of fit to the
training data. Thisproblem arisesrepeatedly in statistical es-
timation, machine learning, and scientific inquiry in general.
Instances of the model selection problem include choosing
the best number of hidden nodes in a neural network, de-
termining the right amount of pruning to be performed on
a decision tree, and choosing the degree of a polynomiad fit
to a set of points. In each of these cases, the goal is not to
minimize the error on the training data, but to minimize the
resulting generalization error.

Many model selection agorithms have been proposed in the
literatureof severd different research communities, too many
to productively survey here. (A more detailed history of the
problemwill begiveninthefull paper.) Perhapssurprisingly,
despite the many proposed solutionsfor model selection and
the diverse methods of anaysis, direct comparisons between
the different proposals (either experimental or theoretical)
arerare.

The goa of this paper is to provide such a comparison,
and more importantly, to describe the general conclusionsto
whichithasled. Relying onevidencethat isdivided between
controlled experimental results and related formal anaysis,
we compare three well-known model selection agorithms.
We attempt to identify their relative and absolute strengths
and weaknesses, and we provide some general methods for
analyzing the behavior and performance of model selection
algorithms. Our hope is that these results may aid the in-
formed practitioner in making an educated choice of model
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selection agorithm (perhaps based in part on some known
properties of the model sel ection problem being confronted).

Thesummary of the paper follows. In Section 2, weprovidea
formalization of themodd selection problem. Inthisformal-
ization, we isolate the problem of choosing the appropriate
complexity for a hypothesisor model. We & so introducethe
specific model selection problem that will be the basis for
our experimental results, and describe an initial experiment
demonstrating that the problemisnontrivial. In Section 3, we
introduce the three model selection algorithms we examine
in the experiments: Vapnik’s Guaranteed Risk Minimization
(GRM) [11], an instantiation of Rissanen’s Minimum De-
scription Length Principle (MDL) [7], and Cross Vaidation
(CV).

Section 4 describes our controlled experimental comparison
of thethreea gorithms. Using artificialy generated datafrom
a known target function allows us to plot complete learning
curves for the three a gorithms over a wide range of sample
sizes, and to directly compare the resulting generalization er-
ror to the hypothesis complexity selected by each algorithm.
Italso allowsusto investigatethe effects of varying other nat-
ural parameters of theproblem, such astheamount of noisein
thedata. These experimentssupport thefollowingassertions:
the behavior of the algorithmsexamined can be complex and
incomparable, even on simple problems, and there are fun-
damental difficultiesinidentifying a“best” algorithm; there
is a strong connection between hypothesis complexity and
generalization error; and it may be impossible to uniformly
improve the performance of the algorithms by dight mod-
ifications (such as introducing constant multipliers on the
complexity penalty terms).

In Sections 5, 6 and 7 we turn our efforts to formal results
providing explanation and support for the experimental find-
ings. We begin in Section 5 by upper bounding the error of
any model selectionagorithmfallingintoawideclass(called
penal ty-based a gorithms) that includes both GRM and MDL
(but not cross validation). The form of this bound highlights
thecompeting desiresfor powerful hypothesesand controlled
complexity. In Section 6, we upper bound the additional er-
ror suffered by cross vaidation compared to any other model
selection algorithm. This qudlity of this bound depends on
the extent to which the function classes have learning curves
obeying a classical power law. Finadly, in Section 7, we give
an impossibility result demonstrating a fundamenta handi-



cap suffered by the entire class of penalty-based algorithms
that does not afflict cross validation. In Section 8, we weigh
the evidence and find that it provides concrete arguments fa
voringtheuse of crossvalidation (or at |east cause for caution
in using any penalty-based agorithm).

2 Dsfinitions

Throughout the paper we assume that a fixed boolean target
function f is used to label inputs drawn randomly accord-
ing to a fixed distribution 1. For any boolean function
h, we define the generalization error e(h) = ¢f p(h) =
Prycplh(z) # f(2)]. Weuse S to denote the random vari-
ableS = (x1,b1), ..., {(xm, bm), wherem isthesamplesize,
each x; is drawn randomly and independently according to
D,and b; = f(x;) & c¢;, wherethe noisebit¢; € {0,1} is1
with probability ; wecal n € [0,1/2) thenoiserate. Inthe
case that 77 # 0, we will sometimes wish to discuss the gen-
eraization error of h with respect to the noisy examples, so
wedefine e’ (h) = Pryep [h(z) # f(z)®c], wherecisthe
noisebit. Notethat (%) and 7 (h) arerelated by the equality
e(h) = (1= n)e(h) +n(1—e(h)) = (1= 2n)e(h) + 7. For
simplicity, we will usethe expression “with high probability”
to mean with probability 1 — 6 over the draw of S, at a cost
of afactor of log(1/6) in the bounds — thus, our bounds
all contain “ hidden” logarithmic factors, but our handling
of confidence is entirely standard and will be spelled out in
the full paper.

We assume a nested sequence of hypothesis classes (or mod-
es) Iy C --- C Fy C ---. Thetarget function f may or
may not be contained in any of these classes, so we define
ha = agmin, g {e(h)} and e,pi(d) = e(ha) (similarly,
hpe(d) = €"(ha)). Thus, hy is the best approximation to
f (with respect to D) inthe class Fz, and €,,:(d) measures
the quality of thisapproximation. Notethat ¢, :(d) isanon-
increasing function of d since the hypothesisfunction classes
are nested. Thus, larger values of d can only improve the
potential approximative power of the hypothesis class. Of
course, the difficulty is to redlize this potential on the basis
of asmall sample.

With thisnotation, the model sel ection problem can be stated
informally: on thebasis of arandom sample S of afixed size
m, thegoal isto choose a hypothesiscomplexity ¢, and ahy-
pothesish € Fz, such that the resulting generalization error
e(h) isminimized. In many treatments of model selection,
including ours, it is explicitly or implicitly assumed that the
model selection algorithm has control only over the choice
of the complexity d, but not over the choice of thefina hy-
pothesish € F;. Itisassumed that thereis afixed algorithm
that chooses a set of candidate hypotheses, one from each
hypothesisclass. Given thisset of candidate hypotheses, the
model sel ection al gorithm then chooses one of the candidates
asthefina hypothesis.

To make these ideas more precise, we define the training
error é(h) = és(h) = [{{xs,b:) € S 2 h(x;) # b;}|/m, and
the version space VS(d) = VSs(d) = {h € Fg : é(h) =
min, ¢ g, {€(R")}}. Notethat ViS(d) C F; may containmore
than one function in F; — severa functions may minimize

thetraining error. If we are lucky, we have in our possession
a (possibly randomized) learning algorithm L that takes as
input any sample S and any complexity value d, and outputs
amember hy of VS(d) (using some unspecified criterion to
bresk tiesif | VS(d)| > 1). More generaly, it may be the
case tha finding any function in VS(d) isintractable, and
that L issimply aheuristic (such as backpropagation or |D3)
that does the best job it can at finding 24 € F; with small
training error on input S and d. In either case, we define
hg = L(S, d) and g(d) = gLyg(d) = g(hd) Note that we
expect €(d), like e,p¢(d), to be a non-increasing function of
d — by going to alarger complexity, we can only reduce our
training error.

We can now give a precise statement of the model selec-
tion problem. First of al, an instance of the model se-
lection problem consists of a tuple ({73}, f, D, L), where
{F4} isthe hypothesis function class sequence, f isthe tar-
get function, D is the input distribution, and L is the un-
derlying learning algorithm. The model selection problem
is then: Given the sample .S, and the sequence of func-
tions hy = L(S,1),...,hg = L(S,d),... determined by
the learning algorithm L, select a complexity value d such
that »; minimizes the resulting generalization error. Thus, a
model selection algorithmisgiven both thesample S and the
sequence of (increasingly complex) hypothesesderived by L
from S, and must choose one of these hypotheses.

Thecurrent formali zati on sufficesto motivateakey definition
andadiscussion of thefundamental issuesinmode! selection.
Wedefine e(d) = er s(d) = e(hq). Thus, e(d) isarandom
variable (determined by the random variable S) that gives
the true generalization error of the function ~4 chosen by .
fromthe class F;. Of course, ¢(d) is not directly accessible
to a modd selection agorithm; it can only be estimated or
guessed in various ways from the sample S. A simple but
important observation is that no model selection agorithm
can achieve generalization error less than ming{e(d)}. Thus
the behavior of the function (d) — especialy the location
and value of its minimum — is in some sense the essential
guantity of interest in model selection.

The prevailing folk wisdom in several research communities
positsthat ¢(d) will typically have a global minimum that is
nontrivial — that is, at an “intermediate” value of d away
from the extremes d = 0 and d = m. As ademonstration
of the validity of this view, and as an introduction to a par-
ticular model selection problem that we will examine in our
experiments, we call the reader’s attention to Figure 1. In
this model selection problem (which we shall refer to as the
intervalsmodel selection problem), theinput domainissim-
ply thereal line segment [0, 1], and thehypothesisclass F; is
simply the class of al boolean functionsover [0, 1] in which
weallow at most d aternationsof label; thus F; istheclass of
al binary step functionswith at most d/2 steps. For the ex-
periments, the underlying learning algorithm L that we have
implemented performstraining error minimization. Thisisa
rare case where efficient minimization is possible; we have
devel oped an algorithm based on dynamic programming that
runsin linear time, thus making experiments on large sam-
plesfeasible. The sample S was generated using the target
functionin Fyqg that divides |0, 1] into 100 segments of equal



width 1/100 and alternating label. In Figure 1 we plot ¢(d)
(which we can calculate exactly, since we have chosen the
target function) when S consists of m = 2000 random ex-
amples (drawn from the uniforminput distribution) corrupted
by noise at the rate » = 0.2. For our current discussion it
suffices to note that (d) does indeed experience a nontrivia
minimum. Not surprisingly, this minimum occurs near (but
not exactly at) the target complexity of 100.

3 ThreeAlgorithmsfor Model Selection

The first two model selection agorithms we consider are
members of agenera classthat weshall informally refer toas
penalty-based a gorithms (and shall formally define shortly).
The common theme behind these algorithmsistheir attempt
to construct an approximation to ¢(d) solely on the basis of
the training error é(d) and the complexity d, often by trying
to “correct” é(d) by the amount that it underestimates ¢(d)
through the addition of a“complexity penaty” term.

In Vapnik’s Guaranteed Risk Minimization (GRM) [11], dis
chosen according to therule

d = argming {&(d) + (d/m)(1+ 1+ {dym/d)} (1)

where for convenience but without |oss of generality we have
assumed that d is the Vapnik-Chervonenkis dimension [11,
12] of the class Fy; this assumption holds in the intervals
model selection problem. The origin of this rule can be
summarized as follows: it has been shown [11] (ignoring
logarithmic factors) that for every d and for every h € Fy,
\/d/misan upper boundon|é(h) — e(h)| and hence |é(d) —
e(d)| < /d/m. Thus, by simply adding /d/m to &(d), we
ensure that the resulting sum upper bounds ¢(d), and if we
are optimistic we might further hope that the sum isin fact
a close approximation to ¢(d), and that its minimization is
therefore tantamount to the minimization of ¢(d). The actua
rule given in Equation (1) isslightly more complex than this,
and reflects arefined bound on |€(d) — e(d)| that varies from
d/mfor é(d) closeto 0to /d/m otherwise.

The next algorithm we consider, the Minimum Description
Length Principle(MDL) [5, 6, 7, 1, 4] hasrather different ori-
ginsthan GRM. MDL isactualy abroad class of algorithms
with acommon informati on-theoretic motivation, each algo-
rithm determined by the choice of a specific coding scheme
for both functionsand their training errors; thistwo-part code
is then used to describe the training sample S. To illustrate
the method, we give a coding scheme for theintervals model
selection problem 2. Let h be afunction with exactly d alter-
nations of label (thus, 2 € F;). To describe the behavior of
h onthesample S = {{x;,b;)}, we can simply specify the
d inputs where i switches value (that is, the indices ¢ such

Vapnik’s original GRM actually multiplies the second term
insidetheargmin{- } above by alogarithmic factor intended to guard
against worst-case choices from V.5(d). Since this factor renders
GRM uncompetitive on the ensuing experiments, we consider this
modified and quite competitive rule whose spirit is the same.

20ur goal here is simply to give one reasonable instantiation
of MDL. Other coding schemes are obviously possible; however,
several of our formal results will hold for essentialy all MDL
instantiations.

that h(xz;) # h(xi41)) 3. Thistakeslog () bits; dividingby
m to normalize, we obtain (1/m)log (7}) ~ H(d/m) [2],
where H(-) is the binary entropy function. Now given A,
thelabelsin S can be described simply by coding the mis-
takes of A (that is, those indices i where h(z;) # f(x;)),
at anormalized cost of H(é(h)). Technicaly, in the coding
scheme just described we aso need to specify the values of
d and é(h) - m, but the cost of these is negligible. Thus, the
version of MDL that we shall examinefor theintervalsmodel
selection problem dictates the following choice of d:

d = argmin, {H(&(d)) + H(d/m)}. (2)

Inthe context of model selection, GRM and MDL can bothbe
interpreted as attempts to model «(d) by transforming é(d)
and d. More formally, a model selection algorithm of the

form ~ .
d = argmin {G(é(d),d/m)} (3

shall be called a penalty-based algorithm #. Notice that an
ideal penalty-based algorithm would obey G(é(d), d/m) ~
e(d) (or at least G(é(d), d/m) and ¢(d) would be minimized
by the same value of d).

The third model selection algorithm that we examine has a
different spirit than the penalty-based agorithms. In cross
validation (CV) [9, 10], we use only a fraction (1 — ) of
the examples in S to obtain the hypothesis sequence #; €
Fi,...,hg € Fyq,...—thatis, hgisnow L(S’, d), where 5’
consists of thefirst (1 — v)m examplesin S. Herey € [0, 1]
isaparameter of the CV a gorithm whose tuning we discuss
briefly later. CV chooses d according to therule

d= wgmind{égfz(ﬁd)} (4)

whereés. (hq) istheerror of kg on S, thelast ym examples
of S that werewithheldinselecting ~4. Noticethat for CV, we
expect thequantity e(d) = €(hq) to be(perhapsconsiderably)
larger than in the case of GRM and MDL, because how h4
was chosen on the basis of only (1 — v)m examples rather
than all m examples. For thisreason wewish tointroducethe
more general notation ¢ 7(d) = e(hgq) toindicatethefraction
of the sample withheld from training. CV settles for € 7(d)
instead of ¢%(d) in order to have an independent test set with
which to directly estimate ¢ 7(d).

4 A Controlled Experimental Comparison

Our results begin with a comparison of the performance and
properties of the three modd selection agorithmsin a care-
fully controlled experimenta setting— namely, theintervals
model selection problem. Among the advantages of such
controlled experiments, at least in comparison to empirica
results on data of unknown origin, are our ability to exactly
measure generalization error (since we know thetarget func-
tion and the distribution generating the data), and our ability

3In the full paper we justify our use of the sample points to
describe h; it is quite similar to representing » using a grid of
resolution 1/p(m) for some polynomial p(-).

4With appropriately modified assumptions, all of the formal re-
sults in the paper hold for the more general form G(é(d), d, m),
where we decouple the dependence on d and m. However, the
simpler coupled form will suffice for our purposes.



toprecisaly study the effects of varying parameters of thedata
(such as noise rate, target function complexity, and sample
size), on the performance of model sel ection agorithms. The
experimental behavior we observe foreshadows a number of
important themes that we shall revisitin our formal results.

We beginwith Figure 2. To obtainthisfigure, atraining sam-
ple was generated from the uniform input distribution and
labeled according to an intervalsfunction over [0, 1] consist-
ing of 100 intervalsof aternating label and equal width®; the
samplewas corrupted with noiseat raten, = 0.2. InFigure2,
we have plotted thetrue generalization errors (measured with
respect to the noise-free source of examples) egrm, €empL and
ecv (using test fraction v = 0.1 for CV) of the hypotheses
selected from the sequence hy, . . ., hq, . . . by each the three
algorithms as a function of sample size m, which ranged
from 1 to 3000 examples. Asdescribed in Section 2, the hy-
potheses h; were obtained by minimizing the training error
within each class F;. Details of the code used to perform
these experiments will be provided in the full paper.

Figure 2 demonstrates the subtlety involved in comparing
the three algorithms: in particular, we see that none of the
three algorithms outperformsthe othersfor all sample sizes.
Thus we can immediately dismiss the notion that one of
the algorithms examined can be said to be optimal for this
problem in any standard sense. Getting into the details, we
seethat thereisaninitial regime (for m from1to dightlyless
than 1000) in which eypL is the lowest of the three errors,
sometimes outperforming egcrm by a considerable margin.
Then there is a second regime (for m about 1000 to about
2500) where an interesting reversal of relative performance
occurs, since now cgry IS the lowest error, considerably
outperforming empy, which has temporarily leveled off. In
both of these first two regimes, ccy remainsthe intermediate
performer. In the third and fina regime, eypL decreases
rapidly to match egrm and the dightly larger ecy, and the
performance of all three algorithmsremains quitesimilar for
all larger sample sizes.

Insight into the causes of Figure 2 is given by Figure 3,
where for the same runs uged to obtain Figure 2, we instead
plot the quantities dgrm, dmpL and dcy, the value of d cho-
sen by GRM, MDL and CV respectively (thus, the “correct”
value, in the sense of simply having the same number of
intervals as the target function, is 100). Here we see that
for small sample sizes, corresponding to thefirst regime dis-
cussed for Figure 2 above, dgrm is lowly approaching 100
from below, reaching and remaining at the target value for
about m = 1500. Although we have not shown it explic-
itly, GRM isincurring nonzero training error throughout the
entire range of m. In comparison, for along initia period
(correspondingto thefirst two regimes of m), MDL issimply
choosing the shortest hypothesisthat incurs no training error
(and thus encodes both “|egitimate” intervalsand noise), and
consequently dypr growsin an uncontrolled fashion, More
precisely, it can be shown that during this period dmpL iS
obeying dupL ~ do = 2n(1 — n)m + (1 — 2n)%s, where
s is the number of (equally spaced) intervals in the target
functionand » isthenoise rate (so for the current experiment

SSimilar results hold for arandomly chosen target function.

s = 100 and » = 0.2). This“overcoding” behavior of MDL
isactually preferable, in terms of generalization error, to the
initia “undercoding” behavior of GRM, as verified by Fig-
ure 2. Once dgrm approaches 100, however, the overcoding
of MDL isarelativeliability, resulting in the second regime.
Figure 3 clearly shows that the transition from the second
to the third regime (where approximate parity is achieved)
is the direct result of a dramatic correction to dypL from
do (defined above) to the target value of 100. Findly, dcy
makes a more rapid but noisier approach to 100 than dgrwm,
and in fact also overshoots 100, but much less dramatically
than dyp. This more rapid initial increase again resultsin
superior generalization error compared to GRM for small m,
but the inability of dcy to settle at 100 results in slightly
higher error for larger m. In the full paper, we examine the
same plotsof generalization error and hypothesiscomplexity
for different values of the noise rate; here it must suffice to
say that for » = 0, dl three algorithms have comparabl e per-
formance for all sample sizes, and as » increases so do the
qualitative effects discussed here for the n = 0.2 case (for
instance, the duration of the second regime, where MDL is
vastly inferior, increases with the noise rate).

The behavior dgrm and dyp. in Figure3 can betraced to the
form of the total penalty functions for the two agorithms.
For instance, in Figures 4, and 5, we plot the total MDL
penaty H(é(d)) + H(d/m) as afunction of d for the fixed
sample sizes m = 2000 and 4000 respectively, again using
noise rate » = 0.20. At m = 2000, we see that the total
penalty hasitsglobal minimum at approximately 650, which
is roughly the zero training error value do discussed above
(we are still in the MDL overcoding regime at this sample
size; see Figures 2 and 3). However, by this sample size,
a significant local minimum has developed near the target
value of d = 100. At m = 4000, this local minimum
at d = 100 has become the global minimum. The rapid
transition of dyp. that marks the start of the fina regime
of generalization error is thus explained by the switching
of the globa total penalty minimum from do to 100. In
Figures 6, we plot thetotal GRM penalty, just for the sample
size'm = 2000. The behavior of the GRM penalty is much
more controlled — for each sample size, the total penalty
has a single-minimum bowl shape, with the minimum lying
to the left of ¢ = 100 for small sample sizes and gradualy
moving over d = 100 and sharpening there for large m; as
Figure 6 shows, the minimum aready liesat ¢ = 100 by
m = 2000, as confirmed by Figure 3.

A natural question to pose after examining Figures 2 and 3
isthe following: is there a penalty-based algorithm that en-
joys the best properties of both GRM and MDL? By this
we would mean an agorithm that approaches the “correct”
d value (whatever it may be for the problem in hand) more
rapidly than GRM, but does so without suffering the long,
uncontrolled “overcoding” period of MDL. An obvious can-
didate for such an algorithmis simply a modified version of
GRM or MDL, in which we reason (for example) that per-
haps the GRM penalty for complexity is too large for this
problem (resulting in theinitial reluctance to code), and we
thus multiply the complexity penalty term in the GRM rule
(the second term inside the argmin{-}) in Equation (1) by a



constant less than 1 (or ana ogously, multiply the MDL com-
plexity penalty term by a constant greater than 1 to reduce
overcoding). The results of an experiment on such a mod-
ified version of GRM are shown in Figures 7 and 8, where
the original GRM performance is compared to a modified
version in which the complexity penalty is multiplied by 0.5.
Interestingly and perhaps unfortunately, we see that thereis
no free lunch: while the modified version does indeed code
more rapidly and thus reduce the small m generalization er-
ror, thiscomes at the cost of a subsequent overcoding regime
withacorresponding degradationin generalization error (and
in fact a considerably slower return to d = 100 than MDL
under the same conditions) é. The reverse phenomenon (re-
luctance to code) is experienced for MDL with an increased
complexity penalty multiplier (detailsin the full paper).

Let us summarize the key points demonstrated by these ex-
periments. First, none of the three a gorithms dominates the
others for al sample sizes. Second, the two penalty-based
algorithms seem to have a bias either towards or against cod-
ing that is overcome by the inherent properties of the data
asymptotically, but that can have alarge effect on generdiza
tion error for small to moderate sample sizes. Third, thisbias
cannot be overcome simply by adjusting the relative weight
of error and complexity penalties, without reversing the bias
of the resulting rule and suffering increased generalization
error for some range of m. Fourth, while CV is not the best
of theagorithmsfor any vaue of m, it does manage to fairly
closely track the best penalty-based a gorithm for each value
of m, and considerably beats both GRM and MDL in their
regimes of weakness. We now turn our attention to our for-
mal results, where each of these key pointswill be devel oped
further.

5 A Bound on Generalization Error for
Penalty-Based Algorithms

We begin our forma results with a bound on the general-
ization error for penaty-based agorithms that enjoys three
features. Firgt, it is general: it applies to practicaly any
penalty-based agorithm, and holds for any model selection
problem (of course, thereisapriceto pay for such generality,
as discussed below). Second, for certain algorithmsand cer-
tain problems the bound can give rapid rates of convergence
to small error. Third, the form of the bound is suggestive
of some of the behavior seen in the experimental results.
We state the bound for the specia but natura case in which
the underlying learning agorithm L is training error mini-
mization; in the full paper, we will present a straightforward
analogue for more general L. Both this theorem and Theo-
rem 2 in the following section are stated for the noise-free
case, but again, straightforward generalizations to the noisy
case will beincluded in thefull paper.

Theorem 1 Let ({F4}, f, D, L) bean instance of the model
selection problemin which . performs training error mini-
mi zation, and assumefor conveniencethat d isthe VC dimen-

SSimilar results are obtained in experimentsin which every oc-
currence of d in the GRM rule is replaced by an “ effective dimen-
sion” cod for any constant ¢o < 1.

sionof Fy. Let G : [0, 1] x ® — % bea functionthat iscon-
tinuousand increasing in both itsarguments, and let e (m)
denotetheexpected generalizationerror of thepenalty-based
model selection algorithmd = argmin,{G(€(d), d/m)} on
atraining sample of size m. Then’

cG(m) < Rg(m) +1/d/m (5)

where R (m) approaches ming{eqp(d)} (which is the best
generalization error achievable in any of the classes F};) as
m — oo. Therate of thisapproach will depend on properties
of G.

Proof: For any vaue of d, we have the inequality
G (&(d), dfm) < G (&(d), d/m). (6)

because d is chosen to minimize G(¢(d), d/m). Using the
uniform convergence bound |¢(h) — &(h)| < +/d/m for all
h € Fy and the fact that G(-,-) is increasing in its first

argument, we can replace the occurrence of é(d) on the left-
hand sideof Equation (6) by e(d)—+/d/m to obtainasmaller
quantity, and we can replace the occurrence of é(d) on the

right-handsideby e,,:(d)++/d/mtoobtainalarger quantity.
This gives

G (e(c?) —\Jd/m, J/m) < G (copeld) +\/@fm, d/m)
(7)

Now because G/(-, -) is an increasing function of its second
argument, we can further weaken Equation (7) to obtain

G (e(c?) - \/%, o) <G (eo,,t(d) + /d/m, d/m) .
(8)

If wedefineGo(z) = G(x,0),thensince (-, -) isincreasing
initsfirst argument, G () iswell-defined, and wemay write

e(d) < G5 (G (copld) +/dfm, dfm) ) ++/d/m. (9)

Now fix any small vaue - > 0. For this r, let d’ be the
smallest value satisfying e, p¢(d') < ming{e pe(d)} + 7 —
thus, d’ is sufficient complexity to aimost match the ap-
proximative power of arbitrarily large complexity. Exam-
ining the behavior of G (G (cope(d') + /d'/m, d'/m)) as
m — oo, We see that the arguments approach the point
(€ope(d'),0), and 80 Gig H(G€ope(d') + /' [m, d' /m)) ap-
proachesGig (G (e ope(d'), 0)) = €opel(d) < min{eqpe(d)}+
7 by continuity of Gi(-, -), asdesired. By defining

Rg(m) = mcgn{Ggl (G (eopt(d) + \/d/—m, d/m))}

(10)
we obtain the statement of the theorem. [l

Let usnow discusstheform of thebound givenin Theorem 1.
Thefirst term R (m) approaches the optimal generalization
error within | Fy in the limit of large m, and the second
term directly penalizes large complexity. These terms may
be thought of as competing. In order for R (m) to approach

"We remind the reader that our bounds contain hidden logarith-
mic factors that we specify in the full paper.



ming{e.p:(d)} rapidly and not just asymptoticaly (that is,
in order to have afast rate of convergence), G(-, ) should
not penalize complexity too strongly, which is obviously at

oddswith the optimization of theterm 1 /d /m. For example,
consider G(€(d),d/m) = é(d) + (d/m)> for some power
a > 0. Assuming d < m, thisruleis conservative (large
penalty for complexity) for smal «,and libera (small penalty

for complexity) for large ov. Thus, to make the term +/d/m
small we would like « to be small, to prevent the choice
of large d. However, Rg(m) = Ming{eqp:(d) + \/d/m +
(d/m)*}, which increases as « decreases, thus encouraging
large « (liberal coding).

Ideally, we might want G-, ) to balance the two terms of
the bound, which implicitly involves finding an appropri-
ately controlled but sufficiently rapid rate of increasein d.
The tension between these two criteriain the bound echoes
the same tension that was seen experimentally: for MDL,
therewas along period of essentially uncontrolled growth of
d (linear in m), and this uncontrolled growth prevented any
significant decay of generalization error (Figures 2 and 3).
GRM had controlled growth of d, and thuswould incur neg-
ligibleerror from our second term — but perhaps thisgrowth
wastoo controlled, asit resultsin theinitially slow (small m)
decrease in generaization error.

To examine these issues further, we now apply the bound
of Theorem 1 to several penaty-based agorithms. In some
cases the final form of the bound given in the theorem state-
ment, while easy to interpret, is unnecessarily coarse, and
better rates of convergence can be obtained by directly ap-
pealing to the proof of the theorem.

We begin withasimplified GRM variant (SGRM), defined by
G(&(d),d/m) = &d) 4+ \/d/m. For thisagorithm, we ob-
serve that we can avoid weakening Equation (7) to Equation

(8), because here Gi(e(d) — v/d/m, d/m) = ¢(d). Thusthe
dependence on d in the bound disappears entirely, resulting

in
eserM(m) < mcgn{eopt(d) + 2 /d/m}. (12)

Thisisnot so mysterious, since SGRM penalizes strongly for
complexity (even more so than GRM). Thisbound expresses
thegeneralization error asthe minimum of the sum of the best
possible error within each class I; and a pendty for com-
plexity. Such a bound seems entirely reasonable, given that
itis mtlally the e<pected value of the empirical quantity
we mi n| mized to choose d in thefirst place. Furthermore, if
€opt(d) + +/d/m approximates ¢(d) well, then such a bound
is about the best we could hope for. However, there is no
reason in general to expect thisto bethe case. Boundsof this
type were first given by Barron and Cover [1] in the context
of density estimation.

As an example of the application of Theorem 1to MDL we
can derive the following bound on eppy (m):

H(H(eope(d) +\/d/m)

H(d/m))} ++/dwoL/m  (12)

EMDL(m) S m(}n{H_

< min(H(eopn(d) + ZH(/dfm)

—|—\/CZMD|_/m (13)

wherewe have used H~1(y) < y and H(z + y) < H(z) +
H(y). Again, we emphasize that the bound given by Equa-
tion (13) is vacuous without a bound on dyp., which we
know from the experiments can be of order m. However,
by combining this bound with an analysis of the behavior of
dwpy for theintervals problem, we can give an accurate the-
oretical explanation for the experimenta findings for MDL
(detailsin the full paper).

Asafina example, weapply Theorem 1to avariant of MDL
inwhich the penalty for coding isincreased over theoriginal,
namely G(é(d), d/m) = H(é(d)) + 1/A?H(d/m) where
is a parameter that may depend on d and m. Assuming that
we never choose d whosetotal penalty islarger than 1 (which
holdsif we ssimply add the “fair coin hypothesis’ to 1), we
have that H(d/m) < A2. Since H(x) > =z, for al =, it

follows that J/m < A. If Aissome decreasing function

of m (say, m* for some 0 < o < 1), then the bound on ¢(d)
given by Theorem 1 decreases at a reasonable rate.

6 A Bound on the Additional Error of CV

In this section we state a general theorem bounding the addi-
tional generalization error suffered by cross validation com-
pared to any polynomial compl exity model selection ago-
rithm A/. By this we mean that given a sample of size m,
agorithm M will never choose a value of d larger than m*
for some fixed exponent £ > 1. We emphasize that thisis a
mild conditionthat ismet in practically every realistic model
selection problem: athough there are many documented cir-
cumstances in which we may wish to choose a model whose
complexity is on the order of the sample size, we do not
imagine wanting to choose, for instance, a neural network
with a number of nodes exponential in the sample size. In
any case, more general but more complicated assumptions
may be substituted for the notion of polynomia complexity,
and we discuss these in the full paper.

Theorem 2 Let M be any polynomial complexity model se-
lection algorithm, and let ({ F4}, f, D, L) be any instance of
model selection. Let ey (m) and ecy(m) denote the expected
generalization error of the hypotheses chosen by A and CV

respectively. Then
cev(m) < em((1—7)m) + O(v/log(m)/ym).  (14)

In other words, thegeneralizationerror of CV onm examples
isat most the generalizationerror M on (1—~)m examples,

plusthe* test penalty term” O(+/log(m)/ym).
Proof Sketch: Let S = (5',.5") be a random sample of
m examples, where |S’| = (1-~)ym and |S”] = ym.

Let dimar = (1L — v)m)* bethe polynomial bound on the
complexity selected by M, and let h’ e Fi,... hde €
Fi,ae be determined by 7/, = L(S’,d). By definition
of CV, d is chosen according tod = agming{és (7))}



By standard uniform convergence arguments we have that
ey — esu(By)| = O(y/1og(m)/ym) for @l d < dymas
with high probability over the draw of 5. Therefore with
high probability

ccv = mgn{E(ﬁ&)} +O(ylog(m)/ym).  (15)

But as we have previously observed, the generaization error
of any model selection algorithm (including A7) on input S5
is lower bounded by ming{e(h/,)}, and our claim directly
follows. l

Note that the bound of Theorem 2 doesnot claim ecy(m) <
em(m) for al M (which would mean that cross validation
is an optimal modd selection algorithm). The bound given
is weaker than thisidea in two important ways. First, and
perhaps most importantly, em ((1—+)m) may beconsiderably
larger than em(1m). This could either be due to properties of
theunderlyinglearning algorithm L, or duetoinherent phase
transitions (sudden decreases) in the optimal information-
theoretic learning curve [8, 3] — thus, in an extreme case,
it could be that the generalization error that can be achieved
withinsome class 'y by trainingon m examplesisclosetoO,
but that the optimal generalization error that can be achieved
in F; by training on a dightly smaller sample is near 1/2.
Thisisintuitively theworst case for cross validation— when
thesmall fraction of thesamplesaved for testingwascritically
needed for trainingin order to achieve nontrivial performance
— and isreflected in thefirst term of our bound. Obviously
therisk of “missing” phase transitions can be minimized by
decreasing the test fraction +, but only at the expense of
increasing the test penalty term, which is the second way in
which our bound fallsshort of theideal. However, unlikethe
potentially unbounded difference em((1 — v)m) — em(m),
our bound on the test penaty can be decreased without any
problem-specific knowledge by simply increasing the test
fraction .

Despite these two competing sources of additional CV er-
ror, the bound has some strengths that are worth discussing.
First of all, the bound holdsfor any model selection problem
instance ({Fy}, f, D, L). We believe that giving similarly
genera bounds for any penalty-based algorithm would be
extremely difficult, if not impossible. The reason for thisbe-
lief arises from the diversity of learning curve behavior doc-
umented by the statistical mechanics approach [8, 3], among
other sources. In the same way that there is no universa
learning curve behavior, there is no universal behavior for
the relationship between the functions é(d) and e(d) — the
relationship between these quantities may depend critically
on the target function and the input distribution (this point
is made more formally in Section 7). CV is sengitive to this
dependence by virtue of its target function-dependent and
distribution-dependent estimate of ¢(d). In contrast, by their
very nature, penalty-based agorithms propose a universal
penalty to be assigned to the observation of error é(h) for a
hypothesis . of complexity d.

A more technica feature of Theorem 2 is that it can be
combined with bounds derived for penalty-based algorithms
using Theorem 1 to suggest how the parameter v should
be tuned. For example, letting A be the SGRM agorithm
described in Section 5, and combining Equation (11) with

Theorem 2 yields

cev(im) < eserv((1—7)m)
++/10gdmax(m)/ym (16)
< min{copi(d) +2y/d/(1=7)m}
++/logdyax(m)/ym (17)

If we knew the form of ¢,,:(d) (or even had bounds on it),
then in principle we could minimize the bound of Equation
(17) as afunction of  to derive arecommended training/test
split. Such a program isfeasible for many specific problems
(such as the intervals problem), or by investigating general
but plausiblebounds on the approximationratee,,(d), such
as €,pt(d) < co/d for some constant ¢cg > 0. We pursue
thisline of inquiry in some detail in the full paper. For now,
we simply note that Equation (17) tells us that in cases for
which the power law decay of generalization error within
each F; holds approximately, the performance of CV will be
competitive with GRM or any other agorithm. This makes
perfect sense in light of the preceding analysis of the two
sources for additional CV error: in problems with power
law learning curve behavior, we have a power law bound
onem((1—~v)m) — em(m), and thus CV “tracks’ any other
algorithm closely in terms of generaization error. Thisis
exactly the behavior observed in the experiments described
in Section 4, for which the power law is known to hold
approximately.

7 Limitationson Penalty-Based Algorithms

Recall that our experimental findings suggested that it may
sometimes be fair to think of penalty-based algorithms as
being either conservative or libera in the amount of coding
they are willingto alow in their hypothesis, and that biasin
either direction can result in suboptimal generalizationthat is
not easily overcome by tinkeringwiththeform of therule. In
this section we treat thisintuition more formally, by givinga
theorem demonstrating some fundamental limitationson the
diversity of problems that can be effectively handled by any
fixed penalty-based algorithm. Briefly, we show that there
are (at least) two very different formsthat the rel ationship be-
tween é(d) and e(d) can assume, and that any penalty-based
algorithm can perform well on only one of these. Further-
more, for the problems we choose, CV can in fact succeed
on both. Thuswe are doing more than simply demonstrating
that no model selection algorithm can succeed universaly
for al target functions, a statement that is intuitively obvi-
ous. We are in fact identifying a weakness that is special to
penalty-based agorithms. However, as we have discussed
previoudly, the use of CV is not without pitfalls of its own.
Wetherefore conclude the paper in Section 8 withasummary
of the different risks involved with each type of algorithm,
and adiscussion of our belief that in the absence of detailed
problem-specific knowledge, our overall analysis favors the
useof CV.

Theorem 3 For any samplesizem, thereare model selection
problem instances ({F'}}, f1, D1, L) and ({F2}, f2, Dy, L)
(where L performs empirical error minimization in both
instances) and a constant v independent of m such that



for any penalty-based model selection algorithm (&, either
eL(m) > ming{ea(d)} + v or €2 (m) > ming{ez(d)} + 7.
Here ¢;(d) isthe function ¢(d) for instance s € {1, 2}, and
€'~(m) is the expected generalization error of algorithm &
for instance:. Thus, on at least one of the two model selec-
tion problems, thegeneralizationerror of ¢ islower bounded
away from the optimal value ming{¢‘(d)} by a constant in-
dependent of m.

Proof Sketch: For notational convenience, in the proof we
useé;(d)ande;(d) (¢ € {1, 2}) torefer to theexpected val ues
of these functions. We start with a rough description of the
properties of the two problems (see Figure 9): in Problem
1, the“right” choice of d is0, any additional coding directly
results in larger generalization error, and the training error,
€1(d), decays gradually withd. In Problem 2, alarge amount
of coding is required to achieve nontrivia generalization er-
ror, and the training error remains large as d increases until
d = m/2, wherethe training error drops rapidly.

More precisdly, we will arrange things so that the first model
selection problem (Problem 1) has the following proper-
ties (1) The function é;(d) lies between two linear func-
tions with y-intercepts 1 and n1(1 — #1) and common -
intercept 271(1 — n1)m < m/2; and (2) e1(d) is mini-
mized & d = 0, and furthermore, for any constant ¢ we
have e1(em) > ¢/2. We will next arrange that the second
model selection problem (Problem 2) will obey: (1) The
function é;(d) = a1 for 0 < d < 291(1 — m)m < m/2,
where n1(1 — n1) > a1; and (2) The function ex(d) islower
bounded by a1 for 0 < d < m/2, but e2(m/2) = 0. In
Figure 9 we illustrate the conditions on ¢(d) for the two
problems, and aso include hypothetical instances of €1(d)
and é,(d) that are consistent with these conditions (and are
furthermore representative of the “true” behavior of the é(d)
functions actually obtained for the two problems we define
momentarily).

We can now give the underlying logic of the proof using the
hypothetical ¢1(d) and éx(d). Let d; denote the complexity
chosen by & for Problem 1, and let d» be defined similarly.
First consider the behavior of G on Problem 2. In this prob-
lem we know by our assumptions on ex(d) that if  fails
to choose d, > m/2, ¢ > aj, dready giving a constant
lower bound on ¢ for this problem. Thisisthe easier case;
thuslet us assume that d, > m/2, and consider the behavior
of GG on Problem 1. Referring to Figure 9, we see that for
0 < d < Dy, g]_(d) > gz(d), and thus

For0<d < Do, G(éi(d),d/m)> G(E(d),d/m) (18)

(because penalty-based algorithms assign greater penalties
for greater training error or greater complexity). Since we
have assumed that d, > m/2, we know that

Ford < m/2, G(éx(d),d/m)> G(éx(d),d/m) (19)
and in particular, thisinequality holdsfor 0 < d < Dg. On
the other hand, by our choice of €1(d) and éx(d), é1(d2) =
€2(d2) = 0. Therefore,

G(gl(dz), dz/m) = G(gz(dz), dz/m) . (20)

Combining thetwo inequalitiesabove (Equation 18 and Equa-
tion 19) with Equation 20, we have that

For O < d < Do, G(gl(d), d/m) > G(gl(dz), dz/m)
(21)
from which it directly follows that in Problem 1, G cannot
choose 0 < d; < Dy. By the second condition on Problem
1 above, this impliesthat e > €(Dy); if we arrange that
Dy = em for some constant ¢, then we have a constant lower
bound on ¢ for Problem 1.

Dueto space limitations, we defer the precise descri ptions of
Problems 1 and 2 for the full paper. However, in Problem
1 the classes F; are essentially those for the intervals model
selection problem, and in Problem 2 the F; are based on
parity functions. 1

We note that although Theorem 3 was designed to create two
model selection problems with the most disparate behavior
possible, the proof technique can beused to givelower bounds
onthegeneralization error of penalty-based algorithmsunder
more genera settings. In the full paper we will also argue
that for thetwo problemsconsidered, the generalization error
of CV isinfact closeto ming{¢;(d)} (that is, within a small
additive term that decreases rapidly with m) for both prob-
lems. Finally, we remark that Theorem 3 can be strengthened
to hold for asinglemodel selection problem (that is, asingle
function class sequence and distribution), with only thetarget
function changing to obtain thetwo different behaviors. This
rules out the salvation of the penalty-based agorithms via
problem-specific parameters to be tuned, such as “effective
dimension”.

8 Conclusions

Based on both our experimental and theoretical results, we
offer the following conclusions:

Model selection agorithms that attempt to reconstruct the
curvee(d) solely by examining thecurve é(d) oftenhave
atendency to overcode or undercodeintheir hypothesis
for small sample sizes, which isexactly the sample size
regime in which model selection isan issue. Such ten-
dencies are not easily eliminated without suffering the
reverse tendency.

There exist model selection problemsinwhich ahypothesis
whose complexity is close to the sample size should be
chosen, and in which a hypothesiswhose complexity is
closeto 0 shouldbechosen, but that generate €(d) curves
with insufficient information to distinguishwhich isthe
case. The penaty-based a gorithms cannot succeed in
both cases, whereas CV can.

The error of CV can be bounded in terms of the error of any
other algorithm. The only cases in which the CV error
may be dramaticaly worse are those in which phase
transitions occur in the underlying learning curves a a
sample size larger than that held out for training by CV.

Thus we see that both types of agorithms considered have
their own Achilles’ Hedl. For penalty-based agorithms, it
isan inability to distinguish two types of problems that call
for drastically different hypothesis complexities. For CV,
it is phase trangitions that unluckily fall between (1 — v)m
examples and m examples. On balance, we fedl that the ev-



idence we have gathered favors use of CV in most common
circumstances. Perhaps the best way of stating our posi-
tion is as follows: given the general upper bound on CV
error we have obtained, and the limited applicability of any
fixed penalty-based rule demonstrated by Theorem 3 and the
experimental results, the burden of proof lies with the prac-
titioner who favors an penalty-based agorithm over CV. In
other words, such a practitioner should have concrete evi-
dence (experimental or theoretical) that their algorithm will
outperform CV on the problem of interest. Such evidence
must arise from detailed problem-specific knowledge, since
we have demonstrated here the diversity of behavior that is
possiblein natural model selection problems.
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Figure 1: Experimenta plots of the functions ¢(d) (lower curve
with local minimum), €7(d) (upper curve with local minimum) and
é(d) (monotonically decreasing curve) versus complexity d for a
target function of 100 alternating intervals, sample size 2000 and
noiserate n = 0.2. Each data point represents an average over 10
trials. The flattening of e(d) and " (d) occurs at the point where
the noisy sample can be realized with no training error.

Figure 2: Experimental plots of generalization errors eypp (m)
(most rapidinitial decrease), ecy(m) (intermediateinitial decrease)
and egrm () (least rapid initial decrease) versussample sizem for
atarget function of 100 alternatingintervalsand noiseraten = 0.20.
Each data point represents an average over 10 trials.
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Figure 3: Experimental plots of hypothesis lengths JMDL(m)
(most rapid initial increase), va(m) (intermediate initial increase)
and dgrw (m) (Ieast rapid initial increase) versus samplesize m for
atarget function of 100 alternatingintervalsand noiseraten = 0.20.
Each data point represents an average over 10 trials.
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Figure 4: MDL total penalty H(é(d)) + H(d/m) versus com-
plexity d for a single run on 2000 examples of a target function of
100 alternating intervals and noiserate = 0.20. Thereisalocal
minimum at approximately d = 100, and the global minimum at
the point of consistency with the noisy sample.
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Figure5: MDL total penalty H(é(d)) + H(d/m) versus complex-
ity d for asingle run on 4000 examples of a target function of 100
alternating intervals and noiserate = 0.20. The globa minimum
has now switched from the point of consistency to the target value
of 100.
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Figure6: GRM total penalty é(d) + (d/m)(1+4 +/1+ é(d)m/d)
versus complexity d for a single run on 2000 examples of a target
function of 100 alternating intervals and noiserate = 0.20.
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Figure 7: Experimental plots of generalization error egrm(m)
using complexity penalty multipliers 1.0 (slow initial decrease)
and 0.5 (rapid initial decrease) on the complexity penalty term
(d/m)(1+ /14 é(d)m/d) versus sample size m on atarget of
100 alternating intervals and noiserate = 0.20. Each data point
representsan average over 10trials.
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Figure8: Experimental plotsof hypothesislength dgrm (m ) using
complexity penalty multipliers 1.0 (slow initial increase) and 0.5
(rapid initial increase) on the complexity penalty term (d/m)(1 +

1+ &(d)m/d) versussamplesizem onatarget of 100 alternating
intervals and noise rate = 0.20. Each data point represents an
average over 10 trials.
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Figure9: Figureillustrating the proof of Theorem 3. Thedark lines
indicatetypical behavior for the two training error curvesé:1(d) and
€2(d), and the dashed lines indicate the provable bounds on é1(d).



